Data Structure & Algorithm
Variables
Before going to the definition of variables, let us relate them to old mathematical equations. All of us have solved many mathematical equations since childhood. As an example, consider the below equation:
We don’t have to worry about the use of this equation. The important thing that we need to understand is that the equation has names (x and y), which hold values (data). That means the names (x and y) are placeholders for representing data. Similarly, in computer science programming we need something for holding data, and variables is the way to do that.
Data Types
In the above-mentioned equation, the variables x and y can take any values such as integral numbers (10, 20), real numbers (0.23, 5.5), or just 0 and 1. To solve the equation, we need to relate them to the kind of values they can take, and data type is the name used in computer science programming for this purpose. A data type in a programming language is a set of data with predefined values. Examples of data types are: integer, floating point, unit number, character, string, etc. Computer memory is all filled with zeros and ones. If we have a problem and we want to code it, it’s very difficult to provide the solution in terms of zeros and ones. To help users, programming
languages and compilers provide us with data types. For example, integer takes 2 bytes (actual value depends on compiler), float takes 4 bytes, etc. This says that in memory we are combining 2 bytes (16 bits) and calling it an integer. Similarly, combining 4 bytes (32 bits) and calling it a float. A data type reduces the coding effort. At the top level, there are two types of data types:
• System-defined data types (also called Primitive data types)
• User-defined data types
System-defined data types (Primitive data types)
Data types that are defined by system are called primitive data types. The primitive data types provided by many programming languages are: int, float, char, double, bool, etc. The number of bits allocated for each primitive data type depends on the programming languages, the compiler and the operating system. For the same primitive data type, different languages may use different sizes. Depending on the size of the data types, the total available values (domain) will also change.
For example, “int” may take 2 bytes or 4 bytes. If it takes 2 bytes (16 bits), then the total possible values are minus 32,768 to plus 32,767 (-215 to 215-1). If it takes 4 bytes (32 bits), then the possible values are between -2,147,483,648 and +2,147,483,647 (-231 to 231-1). The same is the case with other data types.
User defined data types
If the system-defined data types are not enough, then most programming languages allow the users to define their own data types, called user – defined data types. Good examples of user defined data types are: structures in C/C + + and classes in Java. For example, in the snippet below, we are combining many system-defined data types and calling the user defined data type by the name “newType”. This gives more flexibility and comfort in dealing with computer memory.
Data Structures
Based on the discussion above, once we have data in variables, we need some mechanism for manipulating that data to solve problems. Data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently. A data structure is a special format for organizing and storing data. General data structure types include arrays, files, linked lists, stacks, queues, trees, graphs and so on.
Depending on the organization of the
elements, data structures are classified into two types:
1) Linear data structures: Elements are accessed in a sequential order but it is not compulsory to store all elements sequentially. Examples: Linked Lists, Stacks and Queues.
2) Non – linear data structures: Elements of this data structure are stored/accessed in a non-linear order. Examples: Trees and graphs.
Abstract Data Types (ADTs)
Before defining abstract data types, let us consider the different view of system-defined data types. We all know that, by default, all primitive data types (int, float, etc.) support basic operations such as addition and subtraction. The system provides the implementations for the primitive data types. For user-defined data types we also need to define operations. The implementation for these operations can be done when we want to actually use them. That means, in general, user defined data types are defined along with their operations.
To simplify the process of solving problems, we combine the data structures with their operations and we call this Abstract Data Types (ADTs). An ADT consists of two parts:
1. Declaration of data
2. Declaration of operations
Commonly used ADTs include: Linked Lists, Stacks, Queues, Priority Queues, Binary Trees, Dictionaries, Disjoint Sets (Union and Find), Hash Tables, Graphs, and many others. For example, stack uses LIFO (Last-In-First-Out) mechanism while storing the data in data structures.
The last element inserted into the stack is the first element that gets deleted. Common operations of it are: creating the stack, pushing an element onto the stack, popping an element from stack,
finding the current top of the stack, finding number of elements in the stack, etc. While defining the ADTs do not worry about the implementation details. They come into the picture only when we want to use them. Different kinds of ADTs are suited to different kinds of applications, and some are highly specialized to specific tasks. By the end of this book, we will go through many of them and you will be in a position to relate the data structures to the kind of problems they solve.
What is an Algorithm?
Let us consider the problem of preparing an omelette. To prepare an omelette, we follow the steps given below:
1) Get the frying pan.
2) Get the oil.
a. Do we have oil?
i. If yes, put it in the pan.
ii. If no, do we want to buy oil?
1. If yes, then go out and buy.
2. If no, we can terminate.
3) Turn on the stove, etc...
What we are doing is, for a given problem (preparing an omelette), we are providing a step-bystep procedure for solving it. The formal definition of an algorithm can be stated as:
An algorithm is the step-by-step
unambiguous instructions to solve a given problem.
In the traditional study of algorithms, there are two main criteria for judging the merits of algorithms: correctness (does the algorithm give solution to the problem in a finite number of steps?) and efficiency (how much resources (in terms of memory and time) do es it take to execute the).
0 Comments:
Post a Comment
If you have any doubts . Please let me know.